Utilization of Bayesian Framework in Lithology and Fluid Prediction by Using Inverted Elastic Parameter from Seismic Data
Keywords
Bayesian, Posterior probability, Likelihood, Prediction, LithologyAbstract
Development stage of a hydrocarbon field usually aims to discover additional reserves within the working area. In this stage, more data, such as well log and core sample, are available to be included in the development plan compared to early exploration stage. Incorporating the information from well to know the distribution of the prospective zone could be done in many ways. In this paper, the workflow of how information in producing well is utilized to predict the distribution of gas-filled sand by using Bayesian framework is presented. Bayesian frameworks use prior statistical information of the gas sand itself, such as prior probability and likelihood function, in calculating the posterior probability. From the available well data, three lithology and its fluid content are classified as gas sand, brine sand, and shale. The likelihood function of these lithology is computed using Gaussian distribution and the prior probability is estimated by Markov-chain approach. Based on the prior information, the posterior probability is iteratively calculated by using values from elastic parameter section that is inverted from seismic data. The resulting probability section of each lithology will have value ranging from 0 to 1. The maximum-a-posteriori (MAP) in every location in the section is concluded as the most probable lithology to be discovered. The result shows that the distribution of gas sand can be predicted quite well by using acoustic impedance and Vp/Vs ratio. This is proven by a good fit between the predicted lithology section and the well.
References
Buland, A., Kolbjørnsen, O., Hauge, R., Skjæveland,Ø., & Duffaut, K. (2008, May). Bayesian lithology and fluid prediction from seismic prestack data. GEOPHYSICS, 73(3), C13–C21. Retrieved
from https://doi.org/10.1190/1.2842150 doi: doi:10.1190/1.2842150
Buland, A., & Omre, H. (2003, January). Bayesian linearized AVO inversion. GEOPHYSICS, 68(1),
185–198. Retrieved from https://doi.org/10.1190/ 1.1543206 doi: doi:10.1190/1.1543206
Fatti, J. L., Smith, G. C., Vail, P. J., Strauss, P. J., & Levitt, P. R. (1994, September). Detection of gas in sandstone reservoirs using AVO analysis: A 3-d seismic case history using the geostack technique. GEOPHYSICS, 59(9), 1362–1376. Retrieved from https://doi.org/10.1190/1.1443695 doi:doi:10.1190/1.1443695
Grana, D., Mukerji, T., Dvorkin, J., & Mavko, G. (2012, July). Stochastic inversion of facies from seismic
data based on sequential simulations and probability perturbation method. GEOPHYSICS, 77(4), M53–
M72. Retrieved from https://doi.org/10.1190/ geo2011-0417.1 doi: doi:10.1190/geo2011-0417.1
Grana, D., & Rossa, E. D. (2010, May). Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. GEOPHYSICS, 75(3), O21–O37. Retrieved from https://doi.org/10.1190/1.3386676 doi: doi:10.1190/1.3386676
Hampson, D. P., Russell, B. H., & Bankhead, B. (2005, January). Simultaneous inversion of pre-stack seismic
data. In SEG technical program expanded abstracts 2005. Society of Exploration Geophysicists. Retrieved
from https://doi.org/10.1190/1.2148008 doi: doi:10.1190/1.2148008
Kahraman, S., & Yeken, T. (2008, February). Determination of physical properties of carbonate rocks from
p-wave velocity. Bulletin of Engineering Geology and the Environment, 67(2), 277–281. Retrieved from Aki, K., & Richards, P. (2002). Quantitative seismology 2nd edn (mill valley, ca. University Science Books.
Buland, A., Kolbjørnsen, O., Hauge, R., Skjæveland, Ø., & Duffaut, K. (2008, May). Bayesian
lithology and fluid prediction from seismic prestack data. GEOPHYSICS, 73(3), C13–C21. Retrieved
from https://doi.org/10.1190/1.2842150 doi: doi:10.1190/1.2842150
Buland, A., & Omre, H. (2003, January). Bayesian linearized AVO inversion. GEOPHYSICS, 68(1),
185–198. Retrieved from https://doi.org/10.1190/ 1.1543206 doi: doi:10.1190/1.1543206
Fatti, J. L., Smith, G. C., Vail, P. J., Strauss, P. J., & Levitt, P. R. (1994, September). Detection
of gas in sandstone reservoirs using AVO analysis: A 3-d seismic case history using the geostack technique. GEOPHYSICS, 59(9), 1362–1376. Retrieved from https://doi.org/10.1190/1.1443695 doi:
doi:10.1190/1.1443695
Grana, D., Mukerji, T., Dvorkin, J., & Mavko, G. (2012, July). Stochastic inversion of facies from seismic
data based on sequential simulations and probability perturbation method. GEOPHYSICS, 77(4), M53–
M72. Retrieved from https://doi.org/10.1190/ geo2011-0417.1 doi: doi:10.1190/geo2011-0417.1
Grana, D., & Rossa, E. D. (2010, May). Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. GEOPHYSICS, 75(3), O21–O37. Retrieved from https://doi.org/10.1190/1.3386676 doi: doi:10.1190/1.3386676
Hampson, D. P., Russell, B. H., & Bankhead, B. (2005, January). Simultaneous inversion of pre-stack seismic
data. In SEG technical program expanded abstracts 2005. Society of Exploration Geophysicists. Retrieved
from https://doi.org/10.1190/1.2148008 doi: doi:10.1190/1.2148008
Kahraman, S., & Yeken, T. (2008, February). Determination of physical properties of carbonate rocks from
p-wave velocity. Bulletin of Engineering Geology and
the Environment, 67(2), 277–281. Retrieved from Aki, K., & Richards, P. (2002). Quantitative seismology
2nd edn (mill valley, ca. University Science Books.
Buland, A., Kolbjørnsen, O., Hauge, R., Skjæveland, Ø., & Duffaut, K. (2008, May). Bayesian
lithology and fluid prediction from seismic prestack data. GEOPHYSICS, 73(3), C13–C21. Retrieved
from https://doi.org/10.1190/1.2842150 doi: doi:10.1190/1.2842150
Buland, A., & Omre, H. (2003, January). Bayesian linearized AVO inversion. GEOPHYSICS, 68(1),
185–198. Retrieved from https://doi.org/10.1190/ 1.1543206 doi: doi:10.1190/1.1543206
Fatti, J. L., Smith, G. C., Vail, P. J., Strauss, P. J., & Levitt, P. R. (1994, September). Detection of gas in sandstone reservoirs using AVO analysis: A 3-d seismic case history using the geostack technique. GEOPHYSICS, 59(9), 1362–1376. Retrieved from https://doi.org/10.1190/1.1443695 doi: doi:10.1190/1.1443695
Grana, D., Mukerji, T., Dvorkin, J., & Mavko, G. (2012, July). Stochastic inversion of facies from seismic
data based on sequential simulations and probability perturbation method. GEOPHYSICS, 77(4), M53– M72. Retrieved from https://doi.org/10.1190/ geo2011-0417.1 doi: doi:10.1190/geo2011-0417.1
Grana, D., & Rossa, E. D. (2010, May). Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. GEOPHYSICS, 75(3), O21–O37. Retrieved
from https://doi.org/10.1190/1.3386676 doi:
doi:10.1190/1.3386676
Hampson, D. P., Russell, B. H., & Bankhead, B. (2005, January). Simultaneous inversion of pre-stack seismic
data. In SEG technical program expanded abstracts 2005. Society of Exploration Geophysicists. Retrieved
from https://doi.org/10.1190/1.2148008 doi: doi:10.1190/1.2148008
Kahraman, S., & Yeken, T. (2008, February). Determination of physical properties of carbonate rocks from
p-wave velocity. Bulletin of Engineering Geology and the Environment, 67(2), 277–281. Retrieved fromhttps://doi.org/10.1007/s10064-008-0139-0 doi:
doi:10.1007/s10064-008-0139-0
Krumbein, W. C., & Dacey, M. F. (1969, March). Markov chains and embedded markov chains in geology. Journal of the International Association for Mathematical Geology, 1(1), 79–96. Retrieved
from https://doi.org/10.1007/bf02047072 doi:
doi:10.1007/bf02047072
Larsen, A. L., Ulvmoen, M., Omre, H., & Buland, A. (2006, September). Bayesian lithology/fluid prediction
and simulation on the basis of a markov-chain prior model. GEOPHYSICS, 71(5), R69–R78. Retrieved
from https://doi.org/10.1190/1.2245469 doi:
doi:10.1190/1.2245469
Simmons, J. L., & Backus, M. M. (1996, November). Waveform-based AVO inversion and AVO predictionerror. GEOPHYSICS, 61(6), 1575–1588. Retrieved from https://doi.org/10.1190/1.1444077 doi:
doi:10.1190/1.1444077
Xu, S., & Payne, M. A. (2009, January). Modeling elastic properties in carbonate rocks. The Leading Edge,
28(1), 66–74. Retrieved from https://doi.org/10 .1190/1.3064148 doi: doi:10.1190/1.3064148
Zhao, L., Geng, J., Cheng, J., hua Han, D., & Guo, T. (2014, September). Probabilistic lithofacies prediction from prestack seismic data in a heterogeneous carbonate reservoir. GEOPHYSICS, 79(5), M25–
M34. Retrieved from https://doi.org/10.1190/ geo2013-0406.1 doi: doi:10.1190/geo2013-0406.1
This work is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of all articles belongs to the authors. All other copyrights is held by the Journal