Implementation of Two-point Quadrature Gauss-Legendre Method on 2D Gravity Anomaly Modeling in Basins with Density Distribution Varied Polynomially as a Function of Depth

  • Wahyu Srigutomo Kelompok Keahlian Fisika Bumi dan Sistem Kompleks, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, Bandung, Indonesia, 40132
  • Sesri Santurima Kelompok Keahlian Fisika Bumi dan Sistem Kompleks, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, Bandung, Indonesia, 40132
  • Cahyo Aji Hapsoro Kelompok Keahlian Fisika Bumi dan Sistem Kompleks, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, Bandung, Indonesia, 40132
  • Hairil Anwar Kelompok Keahlian Fisika Bumi dan Sistem Kompleks, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, Bandung, Indonesia, 40132
  • I Gede Putu Fadjar Soerya Djaja Kelompok Keahlian Fisika Bumi dan Sistem Kompleks, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, Bandung, Indonesia, 40132

Keywords

Gauss-Legendre quadrature method

Abstract

Study of basin geometry basin is important in geosciences and geophysical exploration. Gravity method can be used to address this issue by measuring gravity anomalies on the surface caused by density contrast between the bedrock and the sediment that fills the basin, geometry of the basin and surface topography. Numerically, gravity anomaly modeling can be conducted using two-point rule Gauss-Legendre Quadrature method, for a case where density contrast varies with depth exponentially. Within the scope of this study, gravity anomalies on the surface are significantly affected by the geometry of the curvature of the bedrock as well as the topographic elevation of the surface and the selected density contrast, and are not significantly affected by the undulation of the bedrock curvature.


 

References

Abramowitz, M. dan Stegun, I. A. (eds), 1970. Handbook of Mathematical Functions, Dover Publications Inc., New York.
Chakravarthi, V., Raghuram, H. M. dan Singh, S. B., 2002. 3D forward gravity modeling of density interfaces above which the density contrast varies continuously with depth: Computers & Geosciences, 28, pp 53{57.
Chappell, A. dan Kusznir, N., 2008. An algorithm to calculate the gravity anomaly of sedimentary basins with exponential density-depth relationships, Geophysical Prospecting, 56, pp 249{258.
Cordell, L., 1973. Gravity anomalies using an exponential density-depth function |San Jacinto Graben, California:
Geophysics, 38, pp 684{690.
Cowie P.A. dan Karner G.D. 1990. Gravity effect of sediment compaction: Examplesfromthe North Sea and the
Rhine Graben. Earth and Planetary Science Letters 99, pp 141{153.
Davis, P. J. dan Polonsky I., 1972. Numerical interpolation, differentiation and integration. In: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (eds M. Abramowitz and I.A. Stegun),
Dover Publications Inc., Chapter 25, pp. 875{924.
Engen O., Frazer L.N., Wessel P. and Faleide J.I. 2006. Prediction of sediment thickness in the Norwegian-Greenland Sea from gravity inversion. Journal of Geophysical Research 111, B11403.
Garcia-Abdeslem, J., 1996. GL2D: A FORTRAN program to compute the gravity anomaly of a 2-D prism where density varies as a function of depth, Computers & Geosciences, 22, pp 823-826.
Garcia-Abdeslem, J., 2003. 2D modeling and inversion of gravity data using density contrast varying with depth and source-basement geometry described by the Fourier series, Geophysics, 68, pp 1909-1916.
Garcia-Abdeslem, J., Romo, J. M., Gomez-Trevino, E., Rammirez-Hernandez, J., Esparza-Hernandez, F. J. dan
Flores-Luna, C. F., 2005. A constrained 2D gravity model of the Sebastian Vizcafino Basin, Baja California Sur,
Mexico, Geophysical Prospecting, 53, pp 755{765.
Gardner, G.H.F., Gardner,L.W., dan Gregory, A.R., 1974. Formation velocity and density|The diagnostic basics
for stratigraphic traps: Geophysics, 39, pp 770{780.
Granser, H., 1987. Three-dimensional interpretation of gravity data from sedimentary basins using an exponential density-depth function: Geophysical Prospecting, 35, pp 1030{1041, doi: 10.1111/j.1365-2478.1987.tb00858.x.
Litinsky, V. A., 1989. Concept of effective density: Key to gravity depth determinations for sedimentary basins:
Geophysics, 54, pp 1474{1482, doi: 10.1190/1.1442611.
Mathews, J. H. dan Fink, K. D., 1999. Numerical Methods using Matlab, Prentice Hall, Upper Saddle River, New
Jersey, pp 342-398.
Matti, J.C., dan Morton, D.M., 1993. Paleogeographic evolution of the San Andreas fault in southern California: a
reconstruction based on a new cross-fault correlation, in Powell, R.E., Weldon, R.J., and Matti, J.C., eds., The
San Andreas fault system: displacement, palinspastic reconstruction, and geologic evolution: Geological Society
of America Memoir 178, p. 107-159.
Ramos-Garcia, F., 1976. Prospeccion geoffisica en la Penninsula de Baja California. III. Simposium de Geologgia
del Subsuelo, PEMEX, Superintendencia General de Exploracion, Distrito Frontera Norte, Reynosa, Tamaulipas,
Mexico, pp. 61{72
Rao, D. B., 1990. Analysis of gravity anomalies of sedimentary basins by an asymmetrical trapezoid model with
quadratic density function, Geophysics, 55, 226{231.
Santos, P. A. dan Rivas, J. A., 2009. Gravity Surveys Contribution to Geothermal Exploration in El Salvador: the
Cases of Berlin, Ahuachapan and San Vicente Areas, Short Course on Surface Exploration for Geothermal
Resources, UNU-GTP and LaGeo, in Ahuachapan and Santa Tecla, El Salvador, 17-30 October, 2009, pp 1-6.
Sari, C. dan Salk, M., 2002. Analysis of gravity anomalies with hyperbolic density contrast: An application to the
gravity data of Western Anatolia, Journal Of The Balkan Geophysical Society, Vol. 5, No 3, pp 87-96.
Silva, J. B. C., D. C. L. Costa, and V. C. F. Barbosa, 2006. Gravity inversion of basement relief and estimation
of density contrast variation with depth: Geophysics, 71, no. 5, J51{J58, doi: 10.1190/1.2236383.
Valdez, F., Emphoux, J. P., Acosta, R., Rammirez, S., Reveles, J. dan Schondube, O., 2006. Late For-
mative Archaeology in the Sayula Basin of Southern Jalisco. Ancient Mesoamerica, 17, pp 297-311,
doi:10.1017/S0956536106060147
Published
Sep 19, 2018
How to Cite
SRIGUTOMO, Wahyu et al. Implementation of Two-point Quadrature Gauss-Legendre Method on 2D Gravity Anomaly Modeling in Basins with Density Distribution Varied Polynomially as a Function of Depth. Jurnal Geofisika, [S.l.], v. 16, n. 2, p. 11-18, sep. 2018. ISSN 2477-6084. Available at: <https://jurnal-geofisika.or.id/index.php/jurnal-geofisika/article/view/51>. Date accessed: 21 nov. 2024. doi: http://dx.doi.org/10.36435/jgf.v16i2.51.