
Jurnal Geofisika (2021) Vol. 19, No. 02 pp. 80-87

Utilization of Bayesian Framework in Lithology and Fluid Prediction

by Using Inverted Elastic Parameter from Seismic Data

Rizky Adityo Prastama1,∗ and Ignatius Sonny Winardhi1

1Institut Teknologi Bandung
∗Email: p.rizkyadityo@gmail.com

Submit: 2021-11-19; Revised: 2021-12-21; Accepted: 2021-12-28

Abstract: Development stage of a hydrocarbon field
usually aims to discover additional reserves within the
working area. In this stage, more data, such as well log and
core sample, are available to be included in the development
plan compared to early exploration stage. Incorporating
the information from well to know the distribution of
the prospective zone could be done in many ways. In
this paper, the workflow of how information in producing
well is utilized to predict the distribution of gas-filled
sand by using Bayesian framework is presented. Bayesian
frameworks use prior statistical information of the gas sand
itself, such as prior probability and likelihood function, in
calculating the posterior probability. From the available
well data, three lithology and its fluid content are classified
as gas sand, brine sand, and shale. The likelihood function
of these lithology is computed using Gaussian distribution
and the prior probability is estimated by Markov-chain
approach. Based on the prior information, the posterior
probability is iteratively calculated by using values from
elastic parameter section that is inverted from seismic data.
The resulting probability section of each lithology will
have value ranging from 0 to 1. The maximum-a-posteriori
(MAP) in every location in the section is concluded as the
most probable lithology to be discovered. The result shows
that the distribution of gas sand can be predicted quite
well by using acoustic impedance and Vp/Vs ratio. This is
proven by a good fit between the predicted lithology section
and the well.
Keywords: Bayesian, posterior probability, likelihood,
prediction, lithology

Abstrak: Tahap pengembangan dari lapangan hidrokar-
bon umumnya bertujuan untuk menemukan cadangan tam-
bahan di dalam area kerja yang dimiliki. Pada tahap
ini, lebih banyak data, seperti data log sumur dan data
core, yang bisa digunakan untuk rencana pengembangan
dibandingkan pada tahap eksplorasi awal. Penggabungan
informasi dari sumur untuk mengetahui sebaran dari zona
prospek dapat dilakukan dengan banyak cara. Pada tulisan
ini, akan ditampilkan alur kerja dimana informasi dari
sumur produksi dapat digunakan dalam memprediksi se-
baran batupasir berisi gas dengan menggunakan kerangka
kerja Bayesian. Kerangka kerja Bayesian menggunakan in-
formasi statistik awal (prior) dari batupasir berisi gas itu
sendiri, seperti probabilitas awal dan fungsi kemungkinan

(likelihood), dalam menghitung probabilitas posterior. Dari
data sumur yang tersedia, tiga litologi beserta konten fluida
diklasifikasikan sebagai batupasir gas, batupasir brine, dan
batulempung. Fungsi likelihood dari ketiga litologi tersebut
dihitung menggunakan distribusi Gauss dan probabilitas
awal diestimasi menggunakan pendekatan rantai Markov.
Berdasarkan informasi awal tersebut, probabilitas posterior
secara iteratif dihitung berdasarkan nilai parameter elastik
yang diperoleh dari inversi data seismik. Penampang proba-
bilitas setiap litologi yang dihasilkan memiliki rentang nilai
antara 0 sampai 1. Nilai maximum-a-posteriori (MAP) pada
setiap lokasi di penampang tersebut disimpulkan sebagai
litologi yang paling mungkin untuk ditemukan. Hasil yang
diperoleh menunjukkan bahwa distribusi batupasir berisi
gas dapat diprediksi dengan cukup baik ketika menggu-
nakan impedansi akustik serta rasio Vp/Vs. Hal ini dibuk-
tikan dengan kecocokan yang cukup baik antara penampang
prediksi litologi dengan sumur.
Kata kunci: Bayesian, probabilitas posterior, kemungki-
nan, prediksi, litologi

1 INTRODUCTION

The advanced stage of hydrocarbon field analysis is to ex-
pand and develop the operation to retrieve more reserves.
Development plan is usually constructed from available data
such as well logs and seismic. The goal is to find another pos-
sible hydrocarbon accumulation area that might be related
to the current production well. The physical characteristics
of the pay zone in the production well is analyzed and the
distribution is mainly assessed by using the seismic data.

Seismic data primarily give initial information of ge-
ological structure inside the coverage area. When a well is
drilled, it enhances the use of seismic data to be inverted into
elastic parameters such as acoustic impedance and Vp/Vs
ratio. These elastic parameters are commonly used to de-
scribe the properties of rock along with its fluid content.
Once the elastic parameter section or volume from seismic
data is obtained, the lateral distribution of pay zone can be
analyzed.

However, it is widely known that seismic data is very
prone to noise. It can be recorded from the data acquisition
and remains in the post-processing stages. This can lead to
inaccurate inverted elastic parameters. The resulting elastic
parameter could be misleadingly affected by noise. Other

© 2021 Himpunan Ahli Geofisika Indonesia



Utilization of Bayesian Framework 81

than that, the physical characteristic of rock is a continuous
value. It means that there is no single exact value that repre-
sent a lithology. For example, a carbonate rock p-wave veloc-
ity (Vp) lies between 3000 m/s up to 6500 m/s (Kahraman
& Yeken, 2008). The exact value is controlled by mineral
composition, total porosity, pore type, fluid content, pres-
sure, etc (Xu & Payne, 2009). This gives us an idea that if
we obtain a Vp that falls into that range, it is very likely
to be a carbonate rock. Based on this perspective, predic-
tion of lithology and fluid content from elastic parameter
could not be seen as a deterministic approach. This is where
probabilistic point of view should be considered in lithol-
ogy prediction. One natural choice of probabilistic frame-
work that includes continuous likelihood value is Bayesian
(Buland, Kolbjørnsen, Hauge, Skjæveland, & Duffaut, 2008;
Grana & Rossa, 2010; Zhao, Geng, Cheng, hua Han, & Guo,
2014).

In this paper, we are going to present the full work-
flow of lithology and fluid content (LFC) prediction by com-
bining simultaneous inversion and Bayesian framework. The
workflow begins with cross-plot analysis to understand the
behavior of our target zone, which is a gas-filled sand reser-
voir. The best elastic parameters that can separate the gas
sand from other observed lithology is chosen. The available
seismic data is then inverted to get these elastic parameters
section. Finally, Bayesian framework is used to iteratively
calculate the probability of gas sand in every point in the
given elastic parameters section. By using this approach, we
are also calculating the uncertainty to find gas sand in any
given point in subsurface.

2 METHODOLOGY

We are going to use single reference or training well for prior
analysis of the gas sand and one section of seismic to predict
the lateral distribution of the gas sand itself. Since the well
has very limited data, our focus in this paper is to show the
workflow of how to utilize Bayesian framework and benefit
us in adding layers of analysis in field development.

2.1 Bayesian Posterior Probability

Bayesian posterior probability is a conditional probability of
an event based on given data or evidence. In our case, it is a
probability of an LFC based on some elastic parameter that
is observed. We can write the Bayesian posterior probability
as follows:

P (L | m) =
P (m | L)P (L)

P (m)
(1)

where P (m | L) is the likelihood function while P(L)
and P(m) are prior probability of the LFC and the elastic
parameter respectively. The idea of this approach is every
defined LFC that we are going to predict already have a
prior probability p(L). When the evidence emerges, such
as the inverted elastic parameter value from seismic data,
this prior probability is updated by the likelihood function
P (m | L) and become posterior probability. The likelihood
function itself is a function that estimate how likely elastic
parameter value m is related to LFC L. For example, suppose

we get a data somewhere in subsurface where the p-wave
velocity is 2500 m/s. We can say that, based on this p-
wave value, we are more likely to find shale compared to
carbonate. The mathematical expression for this case is the
value of P (m = 2500m/s | L = ”shale”) is bigger when
compared to the P (m = 2500m/s | L = ”Carbonate”).

It is common to use more than one elastic parameter for
predicting the LFC. Ideally, we can use two elastic parame-
ters because we usually perform cross-plot analysis between
two parameters that work best in separating different LFC in
our area of interest. Additional elastic parameter also works
as a constraint to reduce the ambiguity of single elastic pa-
rameter. When we use two elastic parameters (m1 and m2),
the formulation of Bayesian posterior probability above can
be modified as follows:

P (L | m1,m2) =
P (m1,m2 | L)P (L)

P (m1,m2)
(2)

The conditional independence theorem states that
P (A,B | C) = P (A | C)P (B | C). We can rewrite equa-
tion above to:

P (L | m1,m2) =
P (m1 | L)P (m2 | L)P (L)

P (m1,m2)
(3)

The denominator P(m1,m2 ) is acting as a normaliz-
ing factor. The posterior probability is then proportional to
(Zhao et al., 2014):

P (L | m1,m2) ∝ P (m1 | L)P (m2 | L)P (L) (4)

The elastic parameters (m1 and m2) are continuous
value. We can use Gaussian likelihood distribution for both
P (m1 | L) and P (m2 | L). For prior probability of LFC
P(L), we will use Markov-chain approach.

2.2 Gaussian Likelihood Distribution

Gaussian distribution, or normal distribution, is a type of
continuous probability distribution of a variable that is cen-
tred on its mean with the curve width defined by its standard
deviation. It can be written as:

P (m = x | L) = f(x) =
1

σ
√
2π

e
1
2
( x−µ

σ
)2 (5)

where x is the variable, µ is the mean, and σ is the stan-
dard deviation. To get the likelihood function of an elastic
parameter m, we need to get the cluster of data from cross-
plot analysis that we can classify it as LFC L. This set of
data is then calculated for its mean and standard devia-
tion so that we can create the likelihood function following
the above equation. After we create the likelihood function,
whenever we have a random value of m, we can calculate its
likelihood for LFC L.

2.3 Markov-chain Prior Probability

The final aspect of Bayesian posterior probability that we
need to calculate is the prior probability of the LFC. Prior
probability itself is the initial chance, without any evidence
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or data, to get the LFC at any place below the surface. The
Markov-chain approach is chosen because it is quite related
to how sedimentary rock sequence is formed.

Markov-chain is a series of events where the probability
of the upcoming event is only determined by the current
event. We can write it mathematically as follows:

P (Li) =
∏
t

|P (Li | Li−1) (6)

Where Li is the LFC at depth point i and Li−1 is the
LFC right beneath it. The reason why Markov-chain is a
good approach in geological observations, such as strati-
graphic sequences of lithologic units, is because the lithologic
units can be structured as discrete events that are spaced
equally along vertical axis (Krumbein & Dacey, 1969). The
transition between unit is represented by using transition
matrix. Suppose we have two lithologic units in our well
named A and B. To create the transition matrix, we should
count the transition between A to A, A to B, B to A, and B
to B in upward or downward direction. Below is the example
of the transition matrix representing lithologic unit A and
B:

T =

 : A B
A 30/50 20/50
B 05/20 15/20

 =

 : A B
A 0.60 0.40
B 0.25 0.75

 (7)

The transition matrix above shows that there are 50
transitions from unit A and 20 transition from unit B. Each
element of the matrix represents how many transitions from
each unit to another. If we look at the first row, there are
30 transitions from unit A to unit A again and another 20
transitions from unit A to unit B.

To estimate the prior probability, we should calculate
for stationary condition of the transition matrix (Grana,
Mukerji, Dvorkin, & Mavko, 2012; Larsen, Ulvmoen, Omre,
& Buland, 2006). The stationary condition is reached when:

nT = n (8)

The variable n is a row matrix with n-number of
columns depending on how many lithologic units we have in
our data. In our example using two lithologic units above,
we can define an initial condition with n = [1 0] or n = [0 1].
We then substitute this matrix to equation 8 above to get a
new matrix n. This process is done iteratively until the input
matrix n on the left-side of the equation resulting the matrix
n itself on the right-side. The final matrix n is representing
the prior probability of each lithologic units.

2.4 Simultaneous Inversion

Hampson, Russell, and Bankhead (2005) proposed a method
in inverting acoustic impedance, shear impedance, and den-
sity simultaneously from seismic data. The method assumes
that reflectivity follows the Aki and Richards (2002) equa-
tion as a function of angle. Originally, the reflectivity in the
interface between two different layers (here are labelled as
layer 1 and 2) for normal incident wave where θ = 0o is:

Rp0 =
Zp2 − Zp1

Zp2 + Zp1
≈ 1

2

△Zp

Zp

≈ 1

2
(
△Vp

V p

+
△ρ

ρ
) (9)

Rs0 =
Zs2 − Zs1

Zs2 + Zs1
≈ 1

2

△Zs

Zs

≈ 1

2
(
△Vs

V s

+
△ρ

ρ
) (10)

Rρ0 =
△ρ

ρ
(11)

where RP 0, RS0, and Rρ0 are reflectivity value that
are caused by difference in acoustic impedance, shear
impedance, and density, respectively (Simmons & Backus,
1996). Buland and Omre (2003) proposed an approximation
for small reflectivity difference between two layers as follows:

Rp0 =
1

2

△Zp

Zp

=
1

2
△lnZp =

1

2
(lnZpi+1 − lnZpi) (12)

The index i in equation 12 is the label for each adjacent
layer in different depth location. If we assume that there are
N layers with their own elastic characteristic, equation 12
can be rewritten into matrix form as follows:


Rp1

Rp2

...
RpN

 =
1

2


−1 1 0 . . .
−1 1 0 . . .
−1 1 0 . . .
...

. . .
. . .

. . .



lnZp1

lnZp2

...
lnZpN

 (13)

This is the reflectivity value based on the difference of
P-impedance for normal incident wave. Since seismic trace
(T) is a product between wavelet (W) and the reflectivity
(R), the matrix form of convolution process involving these
three variables is:


T1

T2

...
TN

 =


w1 0 0 . . .
w2 w1 0 . . .
w3 w2 w1 . . .
...

. . .
. . .

. . .



Rp1

Rp2

...
RpN



=
1

2


w1 0 0 . . .
w2 w1 0 . . .
w3 w2 w1 . . .
...

. . .
. . .

. . .



−1 1 0 . . .
−1 1 0 . . .
−1 1 0 . . .
...

. . .
. . .

. . .



lnZp1

lnZp2

...
lnZpN


(14)

or can be simply written as:

T =
1

2
WDlnZp (15)

where D is called the derivative matrix. Fatti, Smith,
Vail, Strauss, and Levitt (1994) simplified Aki-Richards
equation by incorporating normal incident reflectivity to es-
timate the P-wave reflectivity as a function of angle θ.

Rpp(θ) = c1Rp0 + c2Rs0 + c3Rρ0 (16)

where c1 = 1 + tan2θ, c2 = −8γ2tan2θ, c3 =
−0.5tan2θ + 2γ2sin2θ, and γ = Vs

Vp
. The inversion will use

angle gather data or seismic trace as a function of angle. By
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combining equation 15 and 16, the forward equation of trace
T as a function of angle θ is

T (θ) =
1

2
c1W (θ)Dln(Zp) +

1

2
c2W (θ)Dln(Zs)

+
1

2
c3W (θ)Dln(ρ)

(17)

Hampson et al. (2005) described that the algorithm is
working for natural logarithmic of impedance. The proposed
method described the linearity between lnZp,lnZs, and lnρ
as:

lnZs = kln(Zp) + kc +△ln(Zs) (18)

lnρ = mln(Zp) +mc +△ln(ρ) (19)

where k and m are gradients and kc and mc are in-
tercepts. Equation 18 and 19 tell us that to invert shear
impedance and density, the algorithm will use the deviation
from the linear fit (△lnZs and △lnρ) of acoustic impedance.
We can rewrite the equation 17 in matrix form as follows:


T (θ1)
T (θ2)

...
T (θN )

 =


c̃1(θ1)W (θ1)D c̃2(θ1)W (θ1)D
c̃1(θ2)W (θ2)D c̃2(θ2)W (θ2)D

...
...

c̃1(θN )W (θN )D c̃2(θN )W (θN )D

c̃3(θ1)W (θ1)D
c̃3(θ2)W (θ2)D

...
c̃3(θN )W (θN )D


 lnZp

△ln(Zs)
ln(ρ)


(20)

where c̃1 = 1
2
c1 + 1

2
kc2 + m and c̃2 = 1

2
c2.

From the mathematical expressions mentioned above, it
can be concluded that we need to define the wavelet
for each angle (W (θ)). Other than that, the proposed
method is to create initial impedance model where
[ln(Zp) △ln(Zs) △ln(ρ)]T = [ln(Zp0) 0 0]T to cover
the low frequency. The process is done iteratively by using
conjugate gradient method to solve for Zp, Zs, and ρ.

3 RESULTS AND DISCUSSION

3.1 Prior Analysis in Training Well

Analyzing the elastic behavior of the LFC that we are going
to predict is crucial. Our goal is to get two elastic parameters
that can separate each LFC so that the prediction will be
accurate. We can achieve this by using cross-plot analysis.
Before we perform the analysis, Figure 1 is the complete log
data in the target gas sand zone. In this study, our well data
is limited to density, p-wave, and s-wave velocity. On the
rightmost track, we can see the interpreted LFC based on
the available log data. The magenta, yellow, and green are
representing gas sand, brine sand, and shale, respectively.
The LFC is interpreted from the available log data. We can
see that the gas sand is mostly defined by decreasing bulk
density and p-wave velocity compared to the brine sand.
This is mainly because the fluid difference inside the pore

Figure 1. The available geophysical log data in training well.

The rightmost track is the interpreted LFC. Magenta, yellow,

and green are representing gas sand, brine sand, and shale, re-
spectively.

Figure 2. Cross-plot analysis between acoustic impedance and

Vp/Vs ratio with bulk density as overlying color. The circles are

cluster of each LFC where magenta, yellow, and green are for gas
sand, brine sand, and shale, respectively.

since gas has lower density and bulk modulus compared to
water, resulting in lower bulk density and p-wave velocity.
We also use Vp/Vs ratio in the fourth track to see if there is
shale in our area. It can be inferred that acoustic impedance
and Vp/Vs ratio can separate LFCs. Figure 2 is the cross-
plot between both elastic parameters.

The circles with same color code are the cluster of LFCs.
The outcome of cross-plot analysis in our workflow is to
get the mean µ and standard deviation σ of each LFC for
calculating the Gaussian likelihood distribution. Both pa-
rameters can be calculated from every data point inside the
cluster. Table 1 below is the mean and standard deviation
for acoustic impedance and Vp/Vs ratio. Using these values
and equation 5, we can set a range of acoustic impedance
and Vp/Vs ratio value and create the visualization of the
likelihood distribution (Figure 3).
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Table 1. Mean and standard deviation of Acoustic Impedance(AI) and Vp/Vs ratio for each LFC based on the cross-plot analysis in

Figure 2

LFC AI Mean(µ) AI Std. Dev(σ) Vp/Vs Mean(µ) Vp/Vs Std.Dev(σ)

Gas Sand 4725.38 226.71 2.03 0.06

Brine Sand 6346.04 182.23 2.18 0.05

Shale 5692.62 109.11 2.56 0.08

Figure 3. The Gaussian likelihood distribution of each LFC in

both acoustic impedance (top) and Vp/Vs ratio (bottom). These

distributions are constructed by substituting values from Table 1
into equation 5.

The distribution shows that acoustic impedance will be
more sensitive in separating fluid content inside the sand-
stone. In equation 4, Bayesian framework use likelihood
function for updating the prior believe or prior probability
of each LFC and we call this updated probability as poste-
rior probability. We can see in Figure 3 that in the range
between 4000 to 5500 (m/s) * (g/cc), the likelihood of gas
sand is reaching its maximum while the likelihood of other
classes remains at 0. It means that when we observed acous-
tic impedance in this range, we are most likely to discover
gas sand. This condition is the reason why we conclude that
acoustic impedance is very sensitive in detecting fluid con-
tent inside the rock. Meanwhile, for Vp/Vs, the range below
gas sand curve have some overlaps with brine sand (2.00
– 2.25). By using the same concept, if we get the Vp/Vs
value in this range, there are two possible outcome which
are gas sand or brine sand. We can conclude that Vp/Vs is
not as sensitive as acoustic impedance in identifying fluid
content. However, we can see the shale likelihood function
(green curve) is well separated in the upper end of the Vp/Vs
value. We can conclude Vp/Vs will give more contribution,
or weight, in separating shale from sandstone.

The LFC track in Figure 1 can be used for estimating
the prior probability of each LFC. In Figure 1, there are 457
transitions based on the interpreted LFC track. Since we
defined three LFC, we use 3Ö3 transition matrix to map the
number of transitions between every classes as shown below.
The rows represent the initial lithology, and the columns
represent the transition lithology. For example, we can see
that there are 46 transitions from gas sand where 38 of them
are transitioning into gas sand again right beneath it while
the other 8 are into brine sand.

T =


: GS BS Sh

GS 38 8 0
BS 8 254 11
Sh 0 12 126

 (21)

To estimate the prior probability, first we need to nor-
malize the transition matrix above as follows:

T =


: GS BS Sh

GS 38/46 8/46 0/46
BS 8/273 254/273 11/273
Sh 0/138 12/138 126/138



=


: GS BS Sh

GS 0.826 0.174 0
BS 0.029 0.930 0.041
Sh 0 0.087 0.913

 (22)

Finally, we can estimate the prior probability of each
class by finding the stationary condition of transition matrix
above. The resulting row matrix, consisting of 3 elements for
each class, is:

P (L) =
[
0.103 0.613 0.284

]
(23)

The prior probability matrix above shows that the prob-
ability for brine sand (second column) is very high with
61.3%. This is acceptable since we can see in Figure 1 that
our area of study is dominated with brine-filled sand. Al-
though the prior probability of gas sand is the lowest with
10.3%, we can expect that the final posterior probability
will be updated based on the likelihood function of acoustic
impedance and Vp/Vs ratio.

3.2 LFC Prediction Results

The elastic parameter sections (Figure 4) are our main infor-
mation in estimating the posterior probability of each LFC
laterally. These two sections are primarily a two-dimensional
matrix with rows and columns. Each row represents the
two-way-time (TWT) of the data while each column is as-
signed to specific CDP or coordinate. The algorithm takes
the acoustic impedance and Vp/Vs ratio in each section and
substitutes it to the likelihood function. This process is done
iteratively for each LFC by multiplying the likelihood value
and the LFC’s prior probability itself. Figure 5 below are the
posterior probability for gas sand, brine sand, and shale.

The results in Figure 5 show us that shale has higher
probability to present in the upper part of the section while
the lower part has higher probability of sandstone. The gas
sand location is laterally accumulated in the middle of the
section. To see the LFC distribution better, we can use the
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Figure 4. Simultaneous inversion results for acoustic impedance
(top) and Vp/Vs ratio (bottom). High Vp/Vs ratio can be seen

on upper part that might be related to shale meanwhile inferring

sandstone, especially with gas, is harder just by seeing these two
sections

concept of maximum-a-posteriori (MAP). MAP is the max-
imum posterior probability value in every location in our
section. In other words, this method choose which LFC has
the higher posterior probability and infers it as the most
probable outcome in every point in the section. Figure 6 is
the MAP of the three posterior probability section that we
obtained before.

We can see that the results in seismic section have a
good fit with the well especially in the gas sand segment.
The slight difference between the predicted lithology in the
section and the interpreted lithology in inserted well could
be caused by the limited amount of data as a constraint for
interpreting the lithology in the well itself. The data that we
use to interpret lithology are very limited to density, P-wave,
and S-wave velocity log. Based on the cross-plot in Figure
2, the use of density log to identify gas sand is quite good
since it is very distinctive compared to the other two classes.
This is why we can have a good lateral continuity for gas
sand. For the shale and brine sand, we mainly rely on acous-
tic impedance and Vp/Vs ratio which is generally not good
enough for detecting clay content and the amount of water
inside the pore. Therefore, in the lower part of the section,
we still find some mismatch predictions between these two
classes. However, the MAP section above shows the power of
Bayesian posterior probability inference in predicting LFC
by using seismic data. The distribution of each LFC is seen
as a probability. This perspective will be very useful to de-

Figure 5. Posterior probability results of gas sand (top), brine
sand (middle), and shale (bottom). Red means highest probability

of the LFC to be discovered in the given location below the surface

termine the future of development since we quantitatively
estimating the uncertainty of our target.

Another aspect that we would like to discuss is the im-
portance of accuracy in cross-plot analysis. The posterior
probability section of each LFC is calculated primarily by
using information from training well (P(m—L) and P(L)).
The LFC interpretation in training well will determine the
prior probability of each LFC itself while the LFC cluster
definition in cross-plot affects the resulting likelihood distri-
bution. To get a clearer image on this issue, Figure 7 below
are sets of figures where we define the LFC cluster differ-
ently.

The key difference that should be noticed is how over-
lapping cluster will create more variation in posterior prob-
ability results. In earlier results, most part of the section
is almost divided only to 0 or 1. Each LFC is very distin-
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Figure 6. The predicted LFC based on maximum-a-posteriori
(MAP) value. Notice that the gas sand (magenta) has a good

agreement with the interpreted LFC in training well. It has an-

other accumulation region in the right-hand side that could be
the next prospect to be drilled

Figure 7. The new clusters of LFCs to test the overlapping effect
(top left); Likelihood distribution (top right); The new posterior

probability for gas sand (bottom).

guishable so that the posterior probability will be 1 when
the necessary parameters fall into its acceptable range and 0
otherwise. Meanwhile, in Figure 7 above, overlapping caused
more area with varying posterior probability between 0 and
1. Conceptually, this happened where, in that region, the
acoustic impedance and Vp/Vs ratio values fall in the over-
lapping area of the LFCs. When it happens, the prior prob-
ability will have higher impact in the posterior probabil-
ity equation. This example shows how we should perform
training well analysis carefully. Advanced analysis like Rock
Physics Template is advised to give better guidance in defin-
ing the LFC cluster.

4 CONCLUSIONS

The results show that Bayesian inferences in predicting dis-
tribution of lithology could be very useful in development
of hydrocarbon field. We provided the full workflow includ-
ing the statistical aspect in determining prior probability
and likelihood function for the lithology of interest that we
would like to predict laterally. We can see that limited data
could affect the interpretation in reference well and the prior
probability estimation. We suggest the reader to incorporate
more data, such as water saturation and gamma ray log, as
a constraint during the interpretation. Other than that, we
blindly classify the lithology class from the cross-plot analy-
sis from three different parameter. Additional method such
as Rock Physics Template is advised to give more objective
limit between every observed lithology and to give more per-
spective of porosity and water saturation effect.
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